
Increasing Software Product Reusability and Variability
using Active Components: a Software Product Line

Infrastructure

Bas Geertsema
Information and Computing Sciences

University Utrecht
Utrecht, Netherlands

mail@basgeertsema.net

Slinger Jansen
Information and Computing Sciences

University Utrecht
Utrecht, Netherlands

slinger@slingerjansen.nl

ABSTRACT
Software Product Lines are typically used to support de-
velopment of a software product family and not a software
product population, which denotes a broader and more di-
verse range of software products. We present a Software
Product Line Infrastructure (SPLI) that has been designed
to increase the reuse of software efforts in product popu-
lations. The SPLI takes a bottom-up approach by struc-
turing product features in highly reusable software com-
ponents called Active Components which contain different
types of artefacts. Variability is expressed using domain-
specific models and formal variability models. Variability
is bound during product derivation by executing model-to-
artefact transformations. Components are active because
they are invoked during the derivation process, thereby em-
powering the component. The SPLI enables step-wise refine-
ments of applications by allowing specialization and compo-
sition of models before variability is bound. A prototype
of the SPLI has been created that was used to develop and
evaluate an experimental software product line. It is con-
cluded that within the context of our experimental software
product line the SPLI improves software reuse in software
product populations.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reusable
libraries, Reuse models

General Terms
Design, Experimentation

Keywords
Software Product Lines, Active Components, Variability,
Components, Model-Driven Development

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ECSA 2010, August 23-26, 2010, Copenhagen, Denmark.
Copyright 2010 ACM 978-1-4503-0179-4/10/08 ...$10.00.

1. INTRODUCTION
Software reuse is considered one of the most powerful ways

to address the challenges in developing increasingly more
complex software systems [16]. By reusing software, devel-
opment efforts are amortized which leads to reduced devel-
opment costs. Other goals of software reuse are increased
quality and faster development time [9, 16, 17].

Software product lines (SPL) take a systematic approach
to multi-system development and are an embodiment of soft-
ware reuse [20]. In contrast with single-system development,
a software product line is set up to exploit commonality be-
tween features of a software product family. The production
of software systems is made more economical because build-
ing a new software system becomes mere a matter of integra-
tion and configuration rather than development from scratch
[9]. Members of a software product family are by definition
distinct which means that there is always variability that
must be addressed during product derivation. In a software
product line commonality is captured in reusable software
artefacts that expose variability to adapt the artifact to the
requirements of a specific software product. It is this explicit
notion of reusability and variability that marks a software
product line approach.

Compared to a software product family, a software prod-
uct population [18] encompasses an even more diverse set
of software products; a family of software product fami-
lies. Product populations can be seen at software vendors
that develop archetypical types of software systems for a
wide range of markets. The company where we did our re-
search develops typical administrative business applications
for many customers operating in different markets. Each
market and client has its own peculiarities and the software
is adapted accordingly, both in features and application de-
sign. For example, not every customer requires the adminis-
tration of financial contracts (a feature), but for those that
do, the requirements for financial contracts are often spe-
cific to that customer (design). Software product popula-
tions can also be expected at large (online) application de-
velopment platforms or with applications that are backed
by large component stores. When a SPL has to support a
software product population, the SPL scope increases and
the SPL variability becomes greater in order to be able to
derive all products in the population. An engineering chal-
lenge indeed, especially considering that the development
of all these components is likely subject to distribution over
multiple (independent) development teams. The support for

Software Product FamilySoftware Product Population

Figure 1: Overlapping features.

a product population is attractive however, as software ef-
forts are amortized over a wider range of software products.

We recognize that the line between a software product
family and a software product population is not a rigid one.
However, for our research we assume that software prod-
uct populations show the following characteristics: a) there
is no central, or median software product in a population
although some products will have more weight and will be
more reused than others and b) a feature is reused in more
heterogeneous software products. The implied challenges
are the increased complexity due to the larger number of
features and the increased variability within each feature. In
a product population a software product variant cannot be
defined relative to a central all-encompassing software prod-
uct using negative variability. The strategy that we propose
in this paper is tackling this in the following ways: 1) reduce
complexity by employing domain-specific models and struc-
ture both implementation and design in hierarchical com-
ponents, 2) increase variability by empowering components
and using model-driven generative variability mechanisms
and 3) specify software products using positive variability
through composition and step-wise refinement.

We present a Software Product Line Infrastructure (SPLI),
an SPLE approach that is designed to support software
product populations. Based on the aforementioned strat-
egy, we do this by taking a bottom-up approach in which
product features are structured in highly reusable software
components called Active Components. Using the Model-
Driven Engineering (MDE) paradigm[15], variability, or ap-
plication design, is expressed in domain-specific models and
formal variability models. Variability within components
is achieved by executing model-to-artefact transformations
during product derivation. Active Components are com-
posed hierarchically and can be refined step-wise. The com-
ponents are ’active’ because they are actively queried and
invoked during the derivation process. Distinguishing fea-
tures are the notions of model specialization and model re-
finement and the derivation process in which a global appli-
cation model is established before variability is bound within
components.

The structure of this paper is as follows. First we will
explain the research method in Section 2. In Section 3 and
4, we elaborate on the design rationale and describe the
structural and behavioral design of the SPLI. A prototype
and an experiment are described in Section 5 followed up
by an overview and discussion of the results in Section 6.
Related work is discussed in Section 7 and we conclude in
Section 8.

2. RESEARCH METHOD
The research was triggered by a software development

company that used a software product line approach with
a strong emphasis on code generation. Their main concern
was the limited reuse of software efforts done for specific
clients. More specifically, they recognized that they were
developing a software product population on their software
product line and that they needed to increase reuse of soft-
ware efforts by structuring product features and application
design into reusable components. The research was con-
ducted on-site and there was continuously interaction be-
tween the researchers and the developers at the company.
The Software Product Line Infrastructure (SPLI) was eval-
uated by developing a prototype and a small experimental
software product line. The prototype is an implementation
of the SPLI. It evaluates the feasibility and practicability of
the design. The feasibility determines whether the design
can indeed be translated into a working and functional soft-
ware system upon which software product lines can be de-
veloped. The practicability aspect includes the experienced
development time and difficulty of the development of the
prototype. This provides insight for software development
companies in the attainability of adopting the SPLI. The
experimental software product line was developed on the
prototype and evaluates the design goals of the SPLI, most
notably the support for a broad range of software products
and the use of step-wise refinements of applications. This is
done by developing reusable core artefacts, Active Compo-
nents, and two final applications that share common appli-
cation design and common features but vary are at the same
time considerably in their user interface.

3. DESIGN RATIONALE
The Software Product Line Infrastructure (SPLI) consists

of structural and behavioral aspects. Its design is guided
by the challenges associated with software product popu-
lations: 1) Reduce complexity by structuring features into
reusable and self-describing components that can be com-
posed hierarchically, 2) Increase variability of components
by employing domain-specific models and generative vari-
ability mechanisms and 3) Allow step-wise refinements of
application design by using composition and specialization
of domain-specific models.

3.1 Active Components
The increased product line scope when dealing with a soft-

ware product population leads to extra complexity. Ommer-
ing and Bosch [19] suggest that this can be reduced by mov-
ing from pure variation to both variation and composition.
I.e., there is not a top-down architecture-driven approach,
but a bottom-up component driven approach. By moving
features from a single architecture to multiple independent
components the architecture is not becoming more complex
with every developed component; only the selected and rel-
evant components for a software product together make up
the features of a software product. The design of the SPLI
is based on the premise that this idea of divide and con-
quer is essential to manage the involved complexity when a
wide variety of software products must be supported by the
software product line.

A product feature can span multiple types of artefacts.
Besides source code files there can also be e.g. models, con-
figuration files, data files and images. A component that

A1

Component A Component B

C1

Component C

D1

Partial Application PA1

D2

PA1 = B(A)
Application = C(PA1) = C(PA1(B(A)))
⇒ApplicationModel = C1(D1(D2(A1)))
⇒Input for transformations

Figure 2: Components and partial applications.

represents a feature must therefore also contain multiple
types of software artefacts at possibly different abstraction
levels. The consistent propagation of variability between
all artefacts is the responsibility of the component which is
why transformations are defined by components themselves;
an Active Component must ensure internal integrity upon
reuse.

Application design in the context of the SPLI equals to
the expression of variability in domain-specific models. An
Active Component can provide both implementation (e.g.
source-code, libraries, generators) and/or design (e.g. en-
tity models, state machine models, variability models). A
component that only supplies design in the problem space
is considered a partial application, as it is intended for fur-
ther refinement during application engineering, but it does
in itself not provide a feature in the solution space. The
distinction between components and applications is narrow
here: an application can be considered a component that is
intended to describe a final software product. We have opted
to distinguish between components and application however
as it is easier to understand and fits in better with the overall
SPL paradigm. An example can be seen in Figure 2 where
there are three components (A, B and C) and one partial
application (PA1). The partial application it defined by its
composition (A, B) and defines two domain-specific mod-
els that expresses design specific for that application (D1,
D2). The ’final’ application, i.e. the software product that
is derived from the SPL, is defined by the composition of the
partial application PA1 refined with the third component C.
The resultant application model is the merging of all models
defined in both the components as well as the partial appli-
cation. This application model is subsequently used to drive
the transformations contained within the components A, B
and C.

Active Components are noted active because an Active
Component provides executable specifications that are in-
voked during the derivation process, thereby creating poly-
morphic behaviour. This operational interface must be im-
plemented by all Active Components. We have opted for
this approach as components in a product population can
be used in very heterogeneous software products and are
possible developed independently. By allowing participa-
tion during derivation, an Active Component developer can
check the validity and integrity of the application design

that is specified by the application engineer. It is for exam-
ple possible to do a static analysis on the application model
before all transformations are executed during the deriva-
tion process and errors and warnings can be returned to
the application engineer. This choice has been made to em-
power the component developer. In a bottom-up approach
there is no central authority, or a central architecture, that
constraints or checks the derivation. This responsibility is
transferred from the architecture to the components.

3.2 Variability
As SPL variability inevitably increases when software prod-

uct line scope increases, the need to manage and specify
this additional variability is emphasized. We turned to the
paradigms of Model-Driven Engineering (MDE) [15] and the
closely related Generative Programming (GP) [10] for this.
In MDE models are used to capture system design. During
development these models can automatically be transformed
to other software artefacts, such as source code files. Goals
of model-driven development are: development speed, soft-
ware quality, separation of concerns, reusability and man-
ageability of complexity through abstraction [22]. These are
all qualities that are also of importance in a software prod-
uct line and therefore the use of MDE in software product
lines seems like a natural fit. Indeed, this combination has
been researched quite extensively in other approaches [7, 12,
13, 14, 23]. Models can be either a one-size-fits-all model,
e.g. UML, or domain-specific models. The SPLI makes use
of the latter, as it can be divided in multiple models which
are better for dealing with complexity [24].

The primary variability mechanism used within Active
Components is that of model-to-artefact transformations such
as templates. The transformations operate on the merged
single application model as input and can have different
types of software artefacts as output. A common output
is that of code files, i.e. code generation, but configuration
files or data files can also be the output of a transformation.
Variation specifications in domain-specific models can have
much richer semantics compared to configuration settings
that is found in variability models and can therefore drive
flexible variability mechanisms.

Domain-specific models are at an abstraction level that is
close to the problem domain, meaning that variability can
be specified in a precise and intentional way. The use of
domain-specific models to express variability is in contrast
with SPL approaches that use a single type of model, of-
ten a feature model or variability model, as the only way to
express variability[2, 21, 25]. In these models, product fea-
tures or variation points can be enabled or disabled to match
the requirements of a specific software product. These de-
cisions are used during product derivation to construct a
tailor-made application. Variability models are orthogonal
to the software system and describe the variation points and
variants in a SPL. A variability model can take on many
forms, ranging from a mere informal diagram to a formally
defined model that can be used as input for automated prod-
uct derivation [3]. Variability models have the benefits of
making variability explicit and easily configurable. We be-
lieve that it should be used as a valuable software artefact in
the engineering process; a variability model in a SPL should
not only be a formalized diagram, but rather be integrated
in the software product line engineering infrastructure. Be-
cause of the prevalence of variability models and its ease

of use for product configuration we have opted to include
the use of variability models in the SPLI. Active Compo-
nents thus rely on both domain-specific models and vari-
ability models to express variability. For example, an Active
Component that generates a data access layer for databases
can make use of variability models to expose variants that
have different performance characteristics and also make use
of Entity-Relation Diagrams, a domain-specific model, to
adapt the component to the entities and relations as defined
in the model.

A definitive variability meta-model is not defined by the
SPLI; there are multiple meta-models that can be used to
describe variability models, e.g. [21] or [25]. The SPLI dic-
tates, however, that once a meta-model is chosen that it is
consistently used by all Active Components. I.e., the vari-
ability meta-model becomes a standard on the SPL and de-
scribes the models in which components must define their
variation points and variants. The benefit of using a single
meta-model is that during application design all variation
points and variants can be combined and presented to the
application developer in a uniform way.

3.3 Step-wise Refinements
Step-wise refinement is a powerful paradigm for develop-

ing a complex software system by incrementally adding fea-
tures [6]. A feature in the context of the SPLI includes
implementation artefacts as well as application design arte-
facts such as models. As application design is captured in
domain-specific models, it must be possible to refine these
models as well. This is similar to for example cascading style
sheets (CSS) in web design. A technique called model su-
perimposition has been used for UML by [1]. The SPLI does
not suggest a definitive technique on model specialization.
For instance, in our prototype we worked with explicit ref-
erences to model elements, rather than specialization based
on syntax as used in model superimposition.

As Active Components contain both implementation and
models, a refinement of a component is refinement of the
contained models as well. I.e. for component A and B con-
taining models A.M and B.M the composition A(B) is im-
plicitly also the composition A.M(B.M). A software product
is defined by the composition of its component, thus upon
derivation all models within these components are merged
according to the composition of the components into a single
application model. In the SPLI models can be specialized
and refined with the same ease as for example source code.

A software product line can be based around a central
all-encompassing software product. In such a setup, soft-
ware product variants are derived by excluding features, i.e.
negative variability. We assume that there is no central all-
encompassing application in a software product population,
and therefore applications in our SPLI are defined by 1)
the composition of components (features) and 2) the vari-
ability decisions captured in either the variability model or
domain-specific models. Features and variability decisions
are incrementally added in this setup, i.e. positive variabil-
ity. We call this application design and it is beneficial when
this design can also be reused and refined because a lot of
efforts might go into defining it.

4. SPL INFRASTRUCTURE
The SPL infrastructure (SPLI) follows the traditional dis-

tinction between domain engineering and application engi-

neering. During domain engineering the Active Components
are developed and during application engineering applica-
tion design is captured in domain-specific models, variabil-
ity models and component composition. An overview of the
design can be seen in Figure 3. We will review the structural
aspects first and continue with the behavioral aspects.

4.1 Structure
Product features are structured in Active Components.

A product feature can span multiple software artefacts and
therefore an active component can contain a coherent set
of software artefacts that are related to a feature or fea-
ture set. Active Components are developed during domain
engineering and are always intended for reuse. An active
component can include multiple types of artefacts on multi-
ple abstraction levels. In our SPLI we defined the following
non-exhaustive list of software artefact types: meta-models,
domain-specific models, model constraints, variability mod-
els, transformations, programming libraries and static arte-
facts.

Meta-models define the problem domain in which the com-
ponent operates. This essentially allows component devel-
opers to supply the application developer with meta infor-
mation on how to use this component, i.e. which kind of
models to supply.

Models within components are developed during domain
engineering and are intended as default models or as models
that need to be specialized during application engineering.
For instance, a web-driven security framework might have a
core model in which a user account table schema is defined.
Common application design can be captured by models in
components and reused by applications. Reuse is in this
approach not only on the code level; it is just as important
that models can be reused as well.

Model-to-artefact transformations are defined in Active
Components to generate software artefacts during deriva-
tion that are integrated in the final application. The input
of these transformations is the global application model.
Transformations are essential since they are the primary
way of propagating variability that is expressed in domain-
specific models into the derived software artefacts. Typical
transformations are model-to-code transformation in which
source code files are generated based on models. However,
also configuration regular text files or xml data files can be
generated. Transformations can take on different forms; a
common form is that of templates in which text is outputted
and an integrated programming language can be used to
control output based on the model that is used as input.

Model-to-model transformations are executed prior to the
model-to-artefact transformations. They allow a component
developer to make last-minute changes to the application
model.

Variability models provide a way to specify variation points
and variants within the component. During application en-
gineering specific variants can be enabled or disabled. Dur-
ing derivation, these variant choices can be queried during
execution of transformations and upon selection of artefacts
for integration.

Programming libraries are traditional libraries that can be
used during runtime. Examples are math library or database
access drivers. Programming libraries do not expose vari-
ability that bind during derivation. Variability is possible,
e.g. by sub classing in object-oriented libraries, but typically

Partial Application

Final Application

Domain-speci�c
(meta-)models

+

2. select, combine & specialize models 5. model-to-artefact
transformations

7. integrate

Variability
models

Active Component A

Active Component B

Model-To-Artefact
Transformations

static artefacts
(source code, images, etc)

application model

3. model-to-model
transformations

Model-To-Model
Transformations

transformed
application model

4. static analysis

1. resolve dependencies 6. select static artefacts

application

D
om

ai
n

En
gi

ne
er

in
g

A
pp

lic
at

io
n

En
gi

ne
er

in
g

D
er

iv
at

io
n

Figure 3: SPL Infrastructure.

only during compilation or at runtime.
Static artefacts do not expose any internal variability and

can only be integrated in the software product by including
the whole artefact. Static artefacts can be excluded from
integration depending on the application model, however,
as is the case with all software artefacts.

Applications can be reduced to component composition
and variability decisions in models. The reduction of soft-
ware products to these two specifications means that specifi-
cation and implementation are decoupled. Applications are
not limited to these specifications however. It is allowed to
use other software artefact types in the software product,
such as source code files. These artefacts must be applica-
tion specific and are never intended for reuse. By allowing
other software artefacts we do not bound the application de-
veloper to only the variability that is exposed by the SPL.

4.2 Behavior
An Active Component must implement a well defined in-

terface that is specified by the SPLI. This interface includes
behavioral operations that are invoked during derivation in
order to adapt and integrate the component into the applica-
tion. The derivation process itself is merely an orchestrator
that invokes the components and integrates the output into
the application. During derivation the following tasks are
performed:

1. Resolve all Active Components

2. Select, combine and specialize models

3. Execute model-to-model transformations

4. Static analysis on application model

5. Execute model-to-artefact transformations

6. Select static software artefacts

7. Integrate software artefacts into the application

8. Compile

References to active components are defined in the soft-
ware product’s component composition. All active compo-
nents are resolved to ensure that all selected active compo-
nents are available for construction.

The second step is that all models, both from the compo-
nents and software product, are merged into a single mono-
lithic application model. The merging takes into account
the specialization of models. The output is a single appli-
cation model that specifies the application. The application
model can contain models from different meta-models, i.e.
many type of models are combined. The application model
is the input for all subsequent selections and transforma-
tions. The SPLI dictates that all models are merged into
a single model before executing the steps that can generate
derived artefacts. It is assumed that the application model
is a coherent unit and should be the same for all compo-
nents that act upon it. Indeed, it is this merging of the
models that allows components, in combination with gener-
ative transformations, to adapt to a very heterogeneous set
of software products in the product population.

In the third step, the global model can be transformed by
the active components. The active components can analyze
the model and perform modifications. In this step active

components have the possibility to do last-minute updates
of the model to satisfy any component’s requirements.

After all model transformations have been executed, a
static analysis on the model is performed by the active com-
ponents. This check is to ensure that the model is semanti-
cally valid and all the requirements are met. If errors occur
in this phase, the construction stops and the developer is
informed about the error or warning.

The transformations are executed that take the applica-
tion model as input and have software artefacts as output.
Each active component is given the control to execute the
required transformations and return the software artefacts
that are generated during transformations.

During selection, each active component is queried which
selection of source-code, libraries or other static artefacts are
to be integrated in the software product. The component
can use the application model as an information source to
decide which artefacts are selected. During the selection, the
variability model, the standard model that is specified by
the framework, is of special importance; the use of variation
points and variants allows for easy selection of features or
components.

All selected software artefacts are integrated in the final
application. This typically consists of the (physical) copying
of the static and generated software artefacts. The final step
is the compilation of all programming code, both static and
generated source code.

Of special interest is how the selection of artefacts and the
transformations are decided by the component itself, rather
than a central process. The SPLI merely invokes the com-
ponents and copies the outputs. This allows the component
to decide on the artefacts to be transformed and selected
until the last possible moment where it can base its deci-
sions based on the global application model. This allows for
more complex variability mechanisms that can be used by
the component.

5. EVALUATION
The Software Product Line Infrastructure (SPLI) was eval-

uated using two different methods: a prototype and an ex-
perimental software product line.

5.1 Prototype
A prototype of the SPLI has been developed upon which

software product lines can be created. The prototype is im-
plemented on the Microsoft .NET platform and takes the
form as a Visual Studio 2010 extension. It uses the Mi-
crosoft Visualization & Modeling SDK for the modeling en-
vironment and the T4 templating technology for model-
to-artefact transformations. The operational contracts of
components are defined as code interfaces in C#. Each
Active Component has to implement this interface before
it can be used in the software product line infrastructure.
The model-to-artefact transformations are implemented us-
ing the Microsoft T4 template technology. T4 provides a
flexible templating language that can query and iterate over
model elements to generate textual output adapted to the
input model. The model-to-model transformations are ex-
pressed in C#. An Active Component in the prototype is
effectively a dynamic link library (dll) that contains the im-
plementation to the interface as expected by the SPLI. An
Active Component can either be a project in Visual Studio
that is being referenced in the application, or simply a dll

that is referenced. Models and meta-models can be queried
and modified by most languages on the .NET platform, e.g.
C#. Upon derivation, all models are discovered, merged
and specialized. An application also takes on the form as
a typical Visual Studio project. Active Components can
return warning and error messages which are appended to
the error and warning lists in Visual Studio. This gives the
developer valuable feedback on errors and warnings that oc-
curred, along with filenames and line numbers, if applicable.

5.2 Experimental Software Product Line
An experimental software product line was built on our

prototype to evaluate the design goals of the SPLI. The
software product was inspired by one of the main software
products at the company that drove the research. The ex-
perimental SPL was developed for research purposes and
implemented only a small subset of the features of the com-
pany’s software products. The applications developed on the
experimental software product line provide Create, Read,
Update, Delete (CRUD) functionality for a Customer Rela-
tionship Management (CRM) system.

The software product line consists of six Active Compo-
nents, one partial software product and two final software
products. The active components are: 1) Data Access Layer,
2) Business Logic Layer, 3) Ribbon Meta-Model, 4) Business
Entity Meta-Model, 5) WPF Ribbon and 6) Web Ribbon.

To demonstrate step-wise refinements of software prod-
ucts there are two final applications that share the same
partial CRM application. The partial CRM application cap-
tures common CRM system design in Business Entity mod-
els and Ribbon user interface models. The two final applica-
tions refine this partial CRM application by providing two
different interfaces and specialize the business entity models,
i.e. adding and changing business entities. One application
has an interface build upon Windows Presentation Founda-
tion (WPF), i.e. a desktop application. The other applica-
tion has a web interface and is build upon ASP.NET. Both
provide a ribbon user interface that can be seen in for ex-
ample Word 2007. The difference in implementation of the
user interface, WPF versus web based, is significant because
it would not suffice to capture the variability between a web
interface and a windows client interface in only a variability
model. This demonstrates the use of a bottom-up approach
with components instead of pure variation.

The business entities are defined in a Business Entity mod-
els which is quite similar to an Entity-Relationship Diagram
(ERD) and the user interface of the application is expressed
in a domain-specific interface model. The meta-models of
both the Business Entity Model and the Interface Model
are defined in Active Components and are part of the ex-
perimental SPL, not of the infrastructure itself; they are de-
veloped solely for the experimental software products. A
variability model was specified in the Active Component
that implements the WPF ribbon. It contained variation
points that determined which ribbon tabs were visible.

6. RESULTS AND DISCUSSION
The prototype was developed to evaluate the feasibility

of the SPLI. Although being a prototype, all essential de-
sign elements of the SPLI were implemented and behaved
as intended by the design. The development of the proto-
type took about one month for an experienced developer. It
demonstrates that the software product line infrastructure

we propose can be developed using current technology and
tools.

The experimental software product line is admittedly quite
small; the number of components (6), partial applications
(1) and final applications (2) does not represent a signif-
icant product population. A more encompassing software
product line would better show the possibility of developing
more diverse software products. However, the experimen-
tal SPL does demonstrate how two very different software
products that share common functionality but with differ-
ent user interfaces, can be developed on a single software
product line. The variability between the two interfaces,
a web-interface and a windows-interface, is such that just
variability within a component would not suffice. In this
the strength of composition shows: composing components
are a way of feature selection and thus specifying variations.
An architecture-centric SPL approach would have to specify
all this variability into a single architecture. The experi-
mental software product line furthermore demonstrated the
possibility of step-wise refinements of applications by defin-
ing a partial application that defined common system design
that was refined in two final applications.

The lack of a central product architecture is also one of
its weaknesses. Because all components agree to an implicit
product architecture there is no central authority to check
whether all components adhere to this architecture. The
final integration and compilation phase would discover real
structural architectural mismatches, but there could be more
subtle mismatches that are not uncovered by compilation
alone. We also recognize that a downside of using transfor-
mations is the lack of traceability of variability. Transforma-
tions can potentially be very rich in the mapping between
variability input and the output. It is therefore hard for the
application engineer to trace the impact of variability deci-
sions. As the architecture cannot be enforced by the infras-
tructure, it will have to be enforced using other mechanisms.
A related disadvantage is that components are invoked dur-
ing the derivation and can base their transformations and
integration decisions on both the application model and all
other runtime information that a GPL can offer. This makes
the impact of variability decisions even less transparent. The
trade-off here is between flexibility and adaptiveness on the
one hand and formality and rigidity on the other hand.

7. RELATED WORK
The use of software components to support the develop-

ment of software product populations is inspired by Om-
mering and Bosch [19] who see components as a vital way
to broaden the product scope. The divide and conquer strat-
egy towards application design in the SPLI by using partial
domain-specific models is valued by Warmer and Kleppe [24]
who state that partial models are a good way of maintain-
ing complexity. This is in contrast with big monolithic UML
models which can be hard to maintain. They recognize that
models can be treated in the same way as regular source
code to a large extent; an approach that has been adopted
in our design as well. However, they only do direct trans-
formations between partial models and source code. In the
SPLI proposed here, all partial models are combined into
one big model prior to transformations. Model specializa-
tion for UML, rather than domain-specific models, has been
researched by Apel et al. who refer to it as model superim-
position [1].

The autonomity and adaptiveness of components is in-
spired by active libraries as coined by Czarnecki and Eise-
necker [11]. Active libraries also guide the user of the library,
hence active, and adapts to the requirements at hand. Their
research focuses on a single GPL (C++) however. In con-
trast, Active Components convey multiple type of artefacts.
Another difference is that active libraries adapt during com-
pilation whereas Active Components adapt during deriva-
tion, i.e. before compilation.

The idea of step-wise refinements of system design can be
traced back to GenVoca [5] which is a model for hierarchi-
cal software system design and construction. It expresses
an individual software system as an algebraic equation. Ba-
tory et al. introduced Algebraic Hierarchical Equations for
Application Design, or AHEAD, that works not only for
individual programs but can synthesize multiple programs,
including noncode representations [6]. The SPLI can be seen
as a specialization of AHEAD as it is designed with model-
driven software product lines in mind. AHEAD is a very
generic method and as such it makes no difference between
artefact types nor does it define the composition operators
that work on these artefact types. In the SPLI these gaps
are filled in by defining structural and behavioral aspects
of domain-specific models. Domain-specific models contain
application design which is assumed to be cross-cutting fea-
tures. E.g., An entity model can affect both a Data Access
Layer feature as well as a GUI Layer feature. The SPLI
dictates, in contrast with AHEAD, that all models are com-
posed first into a single model, prior to intra-component
derivations, i.e. model-to-artefact transformations. A simi-
lar effect could be achieved in AHEAD, using the Origami
matrix, as explained in [4], however we opted to enforce this
decision in our SPLI as we believe that this behavior is well
suited for model-driven software product lines where it is to
be expected that a single composed application model must
be the input for the derivations. Other differences between
the SPLI and AHEAD are the explicit notion of application
and domain engineering and the explicit notion of a vari-
ability model. In AHEAD, whole features are composed at
once, whereas in the SPLI variability can be achieved within
Active Components by using the variability model. Similar
is the polymorphic behavior of composition operators: in
the SPLI Active Components are empowered with this task
and they control the derivation of artefacts.

The SPLE approach as presented by Voelter and Gro-
her [23] uses models combined with aspects for cross-cutting
concerns. Their notion of meta product lines, a product line
of product line architectures, can be seen as another way to
look at specifying software products for which we use par-
tial applications. Our SPLI relies more on step-wise refine-
ments for product specification. Also the notion of model
specialization and merging before product derivation is not
mentioned. Their notion of library components with a com-
bination of models and generators is the closest match to
our Active Components. Their approach uses an explicit
architecture, which is lacking in our approach.

An approach similar to the SPLI has been taken by Childs
et al. [8] with their Cadena platform, which is a ’a highly
adaptive type-centric modeling framework with robust, flex-
ible and extensible tool support’. Although there are simi-
larities, their focus is more on specifying component inter-
connectivity using models, rather than using models as a
way to capture application design.

8. CONCLUSIONS
The results of the prototype and experimental software

product line are positive towards the feasibility and utility of
the designed Software Product Line Infrastructure (SPLI).
Software efforts reuse in software product populations is im-
proved in two ways: 1) an Active Component can be reused
in the wider software product spectrum as variability is in-
creased by using domain-specific models to express vari-
ability and executing model-to-artefact transformations to
derive implementations and 2) application design is reused
by using model specialization and allowing step-wise refine-
ments of applications.

For future research we intend to perform a case study at
an ISV with a larger software product line. The research
will emphasize the scalability of the SPLI. More specifically
we will focus on the adaptiveness of Active Components,
software integrity in larger component compositions and the
role of a light-weight top-down software product line archi-
tecture. We expect that these aspects are of special interest
when a bottom-up approach is taken in a software product
line.

9. REFERENCES
[1] S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model

superimposition in software product lines. In ICMT
’09: Proceedings of the 2nd International Conference
on Theory and Practice of Model Transformations,
pages 4–19, Berlin, Heidelberg, 2009. Springer-Verlag.

[2] T. Asikainen, T. Männistö, and T. Soininen.
Kumbang: A domain ontology for modelling
variability in software product families. Adv. Eng.
Inform., 21(1):23–40, 2007.

[3] F. Bachmann, M. Goedicke, J. Leite, R. Nord,
K. Pohl, B. Ramesh, and A. Vilbig. A meta-model for
representing variability in product family
development. In Software Product-Family Engineering,
pages 66–80. 2004.

[4] D. Batory, J. Liu, and J. N. Sarvela. Refinements and
multi-dimensional separation of concerns. In
ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on
Foundations of software engineering, pages 48–57,
New York, NY, USA, 2003. ACM.

[5] D. Batory and S. O’Malley. The design and
implementation of hierarchical software systems with
reusable components. ACM Trans. Softw. Eng.
Methodol., 1(4):355–398, 1992.

[6] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software
Engineering, 30:355–371, 2004.

[7] T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0:
Balancing advanced features in a hierarchical
component model. In SERA ’06: Proceedings of the
Fourth International Conference on Software
Engineering Research, Management and Applications,
pages 40–48, Washington, DC, USA, 2006. IEEE
Computer Society.

[8] A. Childs, J. Greenwald, G. Jung, M. Hoosier, and
J. Hatcliff. Calm and cadena: Metamodeling for
component-based product-line development.
Computer, 39(2):42, 2006.

[9] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Professional,
3rd edition, August 2001.

[10] K. Czarnecki. Overview of generative software
development. pages 313–328, 2004.

[11] K. Czarnecki, U. Eisenecker, and K. Czarnecki.
Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional, June 2000.

[12] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration through specialization and multilevel
configuration of feature models. Software Process:
Improvement and Practice, 10(2):143–169, 2005.

[13] S. Deelstra, M. Sinnema, J. van Gurp, and J. Bosh.
Model driven architecture as approach to manage
variability in software product families. Technical
report, University of Twente, 2003.

[14] J. Greenfield, K. Short, S. Cook, and S. Kent. Software
Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley, August 2004.

[15] S. Kent. Model driven engineering. In IFM ’02:
Proceedings of the Third International Conference on
Integrated Formal Methods, pages 286–298, London,
UK, 2002. Springer-Verlag.

[16] C. W. Krueger. Software reuse. ACM Comput. Surv.,
24(2):131–183, 1992.

[17] W. C. Lim. Effects of reuse on quality, productivity,
and economics. IEEE Softw., 11(5):23–30, 1994.

[18] R. C. v. Ommering. Beyond product families:
Building a product population? In IW-SAPF-3:
Proceedings of the International Workshop on
Software Architectures for Product Families, pages
187–198, London, UK, 2000. Springer-Verlag.

[19] R. C. v. Ommering and J. Bosch. Widening the scope
of software product lines - from variation to
composition. In SPLC 2: Proceedings of the Second
International Conference on Software Product Lines,
pages 328–347, London, UK, 2002. Springer-Verlag.

[20] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software
Product Line Engineering: Foundations, Principles
and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[21] M. Sinnema and S. Deelstra. Industrial validation of
covamof. J. Syst. Softw., 81(4):584–600, 2008.

[22] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven
Software Development: Technology, Engineering,
Management. John Wiley & Sons, 2006.

[23] M. Voelter and I. Groher. Product line
implementation using aspect-oriented and
model-driven software development. Software Product
Line Conference, International, 0:233–242, 2007.

[24] J. Warmer and A. Kleppe. Building a flexible software
factory using partial domain specific models. In Sixth
OOPSLA Workshop on Domain-Specific Modeling
(DSM’06), pages 15–22, Jyvaskyla, October 2006.
University of Jyvaskyla.

[25] D. L. Webber and H. Gomaa. Modeling variability in
software product lines with the variation point model.
Sci. Comput. Program., 53(3):305–331, 2004.

